九叔归来3魁蛊婴在线观看_男人躁女人到高潮AV_香港成人论坛_亚洲精品久久久久久偷窥_夜来香成人网_亚洲制服 视频在线观看_无毒黄站_国产传媒18精品A片一区_麻花豆传媒剧国产MV在线观看_东北60岁熟女露脸在线_国产高清视频在线观看97_一道本视频一二三区_yellow免费播放在线观看_浪漫樱花动漫在线观看官网_高清AV熟女一区_天堂在线www_亚洲第一成年人网站_黄色在线免费观看_av女优快播_久久精品99国产精品日本

English | 中文版 | 手機版 企業登錄 | 個人登錄 | 郵件訂閱
當前位置 > 首頁 > 技術文章 > Videometer成像系統在種子病害表型研究的應用

Videometer成像系統在種子病害表型研究的應用

瀏覽次數:1188 發布日期:2020-7-28  來源:本站 僅供參考,謝絕轉載,否則責任自負
 最近,來自巴西的科學家利用VideometerLab多光譜成像系統發表了題為Detection of Drechslera avenae (Eidam) Sharif [Helminthosporium avenae (Eidam)] in Black Oat Seeds (Avena strigosa Schreb) Using Multispectral Imaging的文章,研究發現365nm紫外波段可用來鑒別黑橡樹種子健康度,與傳統方法相比,多光譜成像方法更加快捷、有效。Videometer多光譜成像系統代表了種子和植物病害成像領域的高水準。
北京博普特科技有限公司是丹麥Videometer公司中國區總代理,全面負責其系列產品在中國市場的推廣、銷售和售后服務。

blob.png

Detection of Drechslera avenae (Eidam) Sharif [Helminthosporium avenae (Eidam)] in Black Oat Seeds (Avena strigosa Schreb) Using Multispectral Imaging
by Fabiano França-Silva 1,*,Carlos Henrique Queiroz Rego 1,Francisco Guilhien Gomes-Junior 1,Maria Heloisa Duarte de Moraes 2,André Dantas de Medeiros 3 and Clíssia Barboza da Silva 4
1Department of Crop Science, University of São Paulo-Luiz de Queiroz College of Agriculture, 11 Pádua Dias Avenue, 13418-900 Piracicaba, Brazil
2Department of Plant Pathology and Nematology, University of São Paulo-Luiz de Queiroz College of Agriculture, 11 Pádua Dias Avenue, Piracicaba 13418-900, Brazil
3Department of Agronomy, Universidade Federal de Viçosa, Peter Henry Rolfs Avenue, Viçosa MG 36570-900, Brazil
4Laboratory of Radiobiology and Environment, University of São Paulo-Center for Nuclear Energy in Agriculture, 303 Centenário Avenue, Piracicaba SP 13416-000, Brazil*Author to whom correspondence should be addressed.

Abstract

Conventional methods for detecting seed-borne fungi are laborious and time-consuming, requiring specialized analysts for characterization of pathogenic fungi on seed. Multispectral imaging (MSI) combined with machine vision was used as an alternative method to detect Drechslera avenae (Eidam) Sharif [Helminthosporium avenae (Eidam)] in black oat seeds (Avena strigosa Schreb). The seeds were inoculated with Drechslera avenae (D. avenae) and then incubated for 24, 72 and 120 h. Multispectral images of non-infested and infested seeds were acquired at 19 wavelengths within the spectral range of 365 to 970 nm. A classification model based on linear discriminant analysis (LDA) was created using reflectance, color, and texture features of the seed images. The model developed showed high performance of MSI in detecting D. avenae in black oat seeds, particularly using color and texture features from seeds incubated for 120 h, with an accuracy of 0.86 in independent validation. The high precision of the classifier showed that the method using images captured in the Ultraviolet A region (365 nm) could be easily used to classify black oat seeds according to their health status, and results can be achieved more rapidly and effectively compared to conventional methods.
Keywords: machine vision; Pyrenophora avenae; reflectance; seed quality; seed pathology
blob.png

Figure 1.Overall flowchart of the main procedures for multispectral data acquisition and analysis. nCDA-Normalized Canonical Discriminant Analysis. LDA-Linear Discriminant Analysis. ROI-Region Of Interest.

blob.png

Figure 2.Mean spectral reflectance signatures measured at 19 wavelengths for non-inoculated seeds (0 h) and inoculated seeds with Drechslera avenae (Eidam) Sharif, at 24, 72 and 120 h after inoculation. σ represents the standard deviation (+/−) of reflectance data in each wavelength.

blob.png

Figure 3.Raw images and corresponding grayscale and nCDA images of black oat seeds at 365 nm for fungus-free seeds (control), and seeds exposed to Drechslera avenae (Eidam) Sharif for 24, 72 and 120 h. In the images transformed by nCDA algorithm, blue color represents healthy tissues, green and yellow colors are intermediate contamination, and red color indicates higher fungal contamination.

blob.png

Figure 4. Linear discriminant analysis (LDA) score plot based on reflectance (a) and color and texture resources (b) of black oat seeds for classes of uninoculated and inoculated seeds with Drechslera avenae (Eidam) Sharif. (a, b) Ellipses show 95% confidence intervals for each seed health class. For each class, n = 200. (c) R-squared values indicate the spectral reflectance contributions of 19 wavelengths, and (d) the individual contribution of 36 variables extracted from multispectral images for classification of four seed health classes: 1-uninoculated; 2-inoculated for 24 h; 3-inoculated for 72 h; 4-inoculated for 120 h.

發布者:北京博普特科技有限公司
聯系電話:010-82794912
E-mail:1206080536@qq.com

用戶名: 密碼: 匿名 快速注冊 忘記密碼
評論只代表網友觀點,不代表本站觀點。 請輸入驗證碼: 8795
Copyright(C) 1998-2025 生物器材網 電話:021-64166852;13621656896 E-mail:info@bio-equip.com
主站蜘蛛池模板: 思茅市| 盐山县| 定襄县| 塔城市| 仲巴县| 石狮市| 芷江| 甘洛县| 岳阳市| 拜泉县| 酒泉市| 高青县| 萨嘎县| 肇州县| 靖西县| 通化市| 揭东县| SHOW| 灵宝市| 华池县| 鸡西市| 桂阳县| 富蕴县| 东宁县| 泸溪县| 会理县| 五峰| 汾西县| 漳浦县| 宜城市| 永胜县| 丹凤县| 关岭| 新平| 晋城| 鄂尔多斯市| 赞皇县| 五寨县| 四子王旗| 平阳县| 鸡西市|