福州大學賴躍坤教授團隊針對可穿戴傳感器、軟機器人、組織工程和傷口敷料等領域對強粘附性水凝膠的迫切需求,開展了創新性研究。目前,界面粘附傳感材料普遍存在兩大技術瓶頸:一是難以實現粘附與非粘附狀態間的快速可逆轉換,二是多液體環境中的粘附性能表現不佳。近期,該團隊借助國儀量子掃描電鏡進行了深入研究。通過丙烯酰胺(AAm)、N-異丙基丙烯酰胺(NIPAM)、由十二烷基硫酸鈉/甲基丙烯酸十八烷基酯/氯化鈉(SDS/OMA/NaCl)組成的膠束溶液和磷鎢酸(PTA),合成了PANC/T水凝膠。
通過PNIPAM鏈段和SDS的動態相互作用,實現了按需粘附和分離。在此基礎上,進一步通過Fe³⁺溶液的浸泡,制備的PANC/T-Fe水凝膠可以在多種濕環境下的實現強粘附。最終開發出一種具有快速響應特性的智能界面粘合水凝膠,可在不同濕度條件下實現按需粘附與分離。該研究以題為“Temperature-Mediated Controllable Adhesive Hydrogels with Remarkable Wet Adhesion Properties Based on Dynamic Interchain Interactions”的論文發表在《Advanced Functional Materials》上。
可控粘附水凝膠的合成與結構特性
PANC/T-Fe水凝膠由親水性AAm、兼具親水和疏水特性的NIPAM以及疏水性OMA通過共聚反應合成,其中PTA起到交聯作用,與聚合物鏈上的氨基形成氫鍵,構建起穩定的聚合物網絡。在實驗過程中,該團隊發現NIPAM和SDS間的相互作用對水凝膠的溫度敏感粘附性能至關重要。隨著溫度降低,SDS結晶易于附著在PNIPAM鏈段,阻礙粘附功能基團與基材作用,導致粘附力下降;溫度升高時,結晶融化,粘附基團與基材接觸更好,粘附力顯著提升。PTA的引入增強了水凝膠在高溫下的粘附力,因其與聚合物鏈的氨基存在物理相互作用,溫度升高時該相互作用被破壞,使水凝膠變軟,與底物形成更多粘附位點。通過水凝膠聚合物鏈間的動態調節實現了可逆的按需粘附。
圖2.水凝膠溫度敏感粘附性機理探究
按需粘附特性與濕環境強粘附性能
PANC/T-Fe 水凝膠具有按需粘附特性,無需外部能量輸入,僅通過簡單冰敷即可實現粘附轉換。在室溫(25°C)下,水凝膠柔軟且粘性強,與玻璃分離時不易剝離且會產生殘留;通過簡單的冰敷,凝膠內聚力增加,彈性增強,剝離變為良性剝離,且低溫下粘附強度降低,冷卻時間延長也會降低粘附強度。溫度循環測試表明,其粘附性能在5°C至 25°C的多次循環測試中基本保持不變,展現出良好的可逆性,可在多種環境中按需粘附,在組織愈合、材料按需修復和濕環境驅動器等方面具有重要應用潛力。
PANC/T-Fe水凝膠多種液態環境的濕粘附性能
PANC/T-Fe水凝膠對破損材料的修復性能
總結
該研究成功合成了具有多種環境強粘附和可逆粘附性能的 PANC/T-Fe 水凝膠,深入揭示了動態鏈間相互作用對水凝膠粘附性能的影響機制,為新型智能粘附材料的設計提供了理論依據。其按需粘附特性無需外部能量,僅通過冰敷即可實現,為智能粘附材料在液體環境中的應用提供了新思路。這種水凝膠在粘附性能調控方面的創新,有望在多個領域得到廣泛應用,推動智能粘合劑技術的發展,為解決材料粘附相關問題提供了新的解決方案。