九叔归来3魁蛊婴在线观看_男人躁女人到高潮AV_香港成人论坛_亚洲精品久久久久久偷窥_夜来香成人网_亚洲制服 视频在线观看_无毒黄站_国产传媒18精品A片一区_麻花豆传媒剧国产MV在线观看_东北60岁熟女露脸在线_国产高清视频在线观看97_一道本视频一二三区_yellow免费播放在线观看_浪漫樱花动漫在线观看官网_高清AV熟女一区_天堂在线www_亚洲第一成年人网站_黄色在线免费观看_av女优快播_久久精品99国产精品日本

English | 中文版 | 手機版 企業登錄 | 個人登錄 | 郵件訂閱
當前位置 > 首頁 > 技術文章 > 基于目標檢測與追蹤算法在提取水稻抽穗開花期表型上的應用

基于目標檢測與追蹤算法在提取水稻抽穗開花期表型上的應用

瀏覽次數:1269 發布日期:2023-7-28  來源:本站 僅供參考,謝絕轉載,否則責任自負
Plant Phenomics | 南京農業大學基于目標檢測與追蹤算法在提取水稻抽穗開花期表型上的應用
 


稻穗是水稻的重要生殖器官,與產量密切相關。稻穗的生長發育離不開養分尤其是氮素的支撐。然而,獲取稻穗在抽穗開花期的表型信息仍然高度依賴于人工,缺乏氮肥對該時期精細表型的精準評價,制約了水稻智能栽培的發展。因此我們需要突破傳統的研究手段,建立一個精準、自動化的方法去觀察稻穗生長發育中的表型變化,并評價氮肥效應。
 

2023年6月, Plant Phenomics 在線發表了南京農業大學前沿交叉研究院等單位題為Analyzing Nitrogen Effects on Rice Panicle Development by Panicle Detection and Time-Series Tracking 的研究論文。
 

本文采用計算機視覺與深度學習相結合的方法,實現了稻穗識別與計數、抽穗期判定,并分析了不同氮肥處理下稻穗開花期精細表型變化。該方法首先利用YOLOv5模型實現稻穗檢測與計數(R2=0.96),并通過穗數的變化判定了水稻抽穗期,誤差在1天以內。然后使用ResNet50網絡模型對稻穗開花狀態進行分類,準確鑒定出稻穗盛花狀態(Accuracy=0.96)。此外,我們以YOLOv5與DeepSORT結合的方式實現了對單個稻穗生長發育的定位追蹤。
 

圖1稻穗檢測、盛花稻穗識別以及稻穗追蹤技術流程圖


在整個抽穗開花期內,用定位追蹤的方式精確到單個稻穗,計算了單穗的開花起始日期、開花持續天數、每日盛花時、盛花持續時間和日均盛花持續時間,詳細展現了稻穗發育的動態變化,這是現有的研究很少能做到的。

視頻1不同氮肥處理下稻穗追蹤結果示例


此外,我們將該方法應用于不同的氮肥處理田間試驗,從小區群體到個體的角度分析了不同氮肥處理下水稻在抽穗開花期內的表型差異。研究發現對水稻群體而言,隨著施氮量的增加,一方面穗數增加,抽穗期變化不顯著,但持續天數略有延長;另一方面累積開花穗數增加,水稻開花起始日期提前,結束日期推遲,意味著花期變長。對單穗而言,施氮量越高,單穗開花起始日期越早,開花天數及盛花總持續時間顯著增加;而盛花開始時間差異不顯著,單日盛花持續時間略有下降。
 

通過我們提出方法所得出的結論與前人通過傳統手段得到的研究結果基本一致。本文提出的方法不但可以省去繁瑣耗時的人工觀測,還可以記錄更加準確和全面的稻穗發育性狀。該方法為水稻栽培管理和育種提供了一種高效的表型提取與分析手段,也為未來水稻現代化生產提供了技術支撐。
 

本研究由南京農業大學前沿交叉研究院聯合現代作物生產省部共建協同創新中心以及東京大學國際田間植物表型實驗室共同完成。南京農業大學在讀博士生周欽陽為本文第一作者,南京農業大學穆悅講師和二宮正士教授為本文通訊作者。本研究得到了江蘇省種業振興揭榜掛帥項目、海南省崖州灣種子實驗室、國家重點研發計劃項目的資助。
 

論文鏈接:
https://doi.org/10.34133/plantphen‍omics.0048

本研究所提出的技術分享于Github
https://github.com/Kyangzhou/data

——推薦閱讀——
From Prototype to Inference: A Pipeline to Apply Deep Learning in Sorghum Panicle Detection
https://doi.org/10.34133/plantphenomics.0017
Plant Phenomics | 從原型到推理:深度學習在高粱穗部檢測中的應用
Semi-Self-Supervised Learning for Semantic Segmentation in Images with Dense Patterns
https://doi.org/10.34133/plantphenomics.0025
Plant Phenomics | 密集模式下圖像語義分割的半自監督學習

加入作者交流群
掃碼添加小編微信,拉您進入《植物表型組學》作者交流群,群內不定期開展作者分享會、專刊發布會等高質量活動。


添加小編微信,備注姓名+單位+PP,加入作者交流群


About Plant Phenomics

《植物表型組學》(Plant Phenomics)是由南京農業大學和美國科學促進會(AAAS)合作創辦的英文學術期刊,于2019年1月正式上線發行。采用開放獲取形式,刊載植物表型組學交叉學科熱點領域具有突破性科研進展的原創性研究論文、綜述、數據集和觀點。具體范圍涵蓋高通量表型分析的最新技術,基于圖像分析和機器學習的表型分析研究,提取表型信息的新算法,作物栽培、植物育種和農業實踐中的表型組學新應用,與植物表型相結合的分子生物學、植物生理學、統計學、作物模型和其他組學研究,表型組學相關的植物生物學等。期刊已被DOAJ、Scopus、PMC、EI和SCIE等數據庫收錄。科睿唯安JCR2022影響因子為6.5,位于農藝學、植物科學、遙感一區。中科院農藝學、植物科學一區、遙感二區、生物大類一區(TOP期刊)。2020年入選中國科技期刊卓越行動計劃高起點新刊項目。

說明:本文由《植物表型組學》編輯部負責組稿。
中文內容僅供參考,一切內容以英文原版為準。 
特邀作者:周欽陽(南京農業大學)
排版:向雪薇(南京農業大學)
審核:孔敏、王平

發布者:北京博普特科技有限公司
聯系電話:010-82794912
E-mail:1206080536@qq.com

用戶名: 密碼: 匿名 快速注冊 忘記密碼
評論只代表網友觀點,不代表本站觀點。 請輸入驗證碼: 8795
Copyright(C) 1998-2025 生物器材網 電話:021-64166852;13621656896 E-mail:info@bio-equip.com
主站蜘蛛池模板: 叙永县| 栾川县| 云南省| 麻阳| 麟游县| 禄丰县| 辰溪县| 柘荣县| 乌兰浩特市| 青冈县| 金平| 腾冲县| 博爱县| 营口市| 张掖市| 周口市| 伊金霍洛旗| 临西县| 株洲市| 秦皇岛市| 洛川县| 百色市| 阳朔县| 扶风县| 霍州市| 扎兰屯市| 卢龙县| 唐海县| 湘潭县| 佛教| 闽侯县| 马关县| 固安县| 沙洋县| 姚安县| 曲沃县| 孟州市| 大英县| 且末县| 体育| 阿尔山市|